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Eddy-Preserving Limiter for Unsteady Subsonic Flows
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A slope-limiting algorithm for second-order monotone upstream-centered schemes for conservation laws is
introduced to reduce the dissipation of vortices in flow simulations. The algorithm is based on the reconstruction of
velocity components along the principle axes of the vortex and the augmentation of the central gradients’ weight for
the interpolation of velocity components on the swirl plane of the vortex. The performance of the scheme in different
vortical flow problems is investigated. The proposed limiting algorithm has been able to considerably reduce the
dissipation of vortices provided that the spatial and temporal discretization of the problem have been fine enough to
resolve the length and time scales of the corresponding vortical motion. In particular, the scheme has significantly
outperformed the conventional van Albada limiter to resolve the second peak in the lift coefficient spectra in the case

of a NACAO0021 airfoil at a poststall condition.
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control volume

detached-eddy simulation coefficients

distance from the wall

modified distance from the wall

Roe flux

convective flux

delayed detached-eddy simulation function
helicity factor

blending factor for slope calculation

= transformation matrix from Cartesian to vortex
coordinate system

radial vector toward the center on the swirl plane
pressure

low-speed preconditioning matrix for conservative
variables

vector of position

vortex coordinate system

Cartesian coordinate system

vector of the mesh edge

vector of conservative variables

real eigenvector, real, and imaginary parts of
complex eigenvector of velocity gradient tensor
vector of primitive variables

flow velocity vector

artificial dissipation scaledown factor
thresholds to specify orbital compactness of
vortical motion

= vector of primitive variable increments

= small constant

velocity component along vorticity vector
slope limiter

helicity threshold
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Ar A, = real eigenvalue, real, and imaginary parts of the
and A, complex eigenvalue of velocity gradient tensor
® = vorticity vector
P = density
o, = helicity sensor
T = tangential velocity direction on swirl plane of a
vortex
I = L,-norm
/ = variables in vortex system
= dot product
= normalized vector
= averaged quantity
1 = V-1
A% = gradient operator
aC = control volume boundary surfaces
Subscripts
i, = evaluated at grid point i, j
r,cr,ci = components along u,, u.,, u,; vectors
X, v, 2 = X, Yy, zcomponents of a vector in Cartesian system
Superscripts
—1 = inverse
+— = left and right interpolated values
c = central component
T = transpose
u = upwind component

1. Introduction

UMERICAL modeling of the vortical flow is of great
importance to many engineering fluid dynamic applications.
Aerodynamic stability and control of aircraft are greatly influenced
by vortical flow phenomena such as the vortex formation and its
interaction with high-lift devices, particularly as a result of the
installation of vortex generators [1] and vortex breakdowns [2,3].
Ship hydrodynamics, likewise, involves numerous vortical flow
features that are crucial for the performance assessment of the vehicle
[4]. Numerical algorithms capable of accurately capturing vortex
characteristics and its interactions with the surrounding turbulent
flowfield can hence provide valuable predictions to many
engineering applications.
Two main factors compete to impede the resolution of vortices in
Reynolds-averaged Navier Stokes (RANS) simulations: the artificial


http://dx.doi.org/10.2514/1.J051200

Downloaded by UNIV OF MISSOURI-COLUMBIA on February 24, 2013 | http://arc.aiaa.org | DOI: 10.2514/1.J051200

430 MOHAMED, NADARAJAH, AND PARASCHIVOIU

dissipation of flux calculation schemes and the turbulence viscosity.
By vortices, herein, we intend not only individual and statistically
well-defined vortices such as tip-vortices or leading-edge separation
vortices, but also stochastic turbulent eddies. Even though the spatial
and the temporal discretizations of a simulation might be sufficiently
fine to capture vortical motions of certain length scales, the resolution
of vortices can be significantly impaired due to high artificial dissi-
pation or excessive turbulent viscosity.

Several modifications have been proposed to reduce the level of
turbulence viscosity in vortical regions of the flow. The production
term in the majority of turbulence models is a function of local flow
vorticity; hence in the core of a vortex, this term is overactivated and
an excessive amount of turbulence viscosity is generated. Dacles—
Mariani et al. [5] and Spalart and Shur [6] curvature introduced a
sensor based on the ratio of the magnitude of the local strain tensor
and the local vorticity to distinguish pure vortical regions of the flow
from shear layers where both strain tensor and vorticity have
considerable magnitudes. The production term of the turbulence
viscosity in the Spalart—Allmaras (SA) equation is then reduced as a
function of this sensor in the vortical flow regions. Brandsmaetal. [7]
proposed similar modifications for the k- turbulence model. In the
detached eddy simulation (DES) [8] and the delayed detached eddy
simulation (DDES) [9] schemes proposed by Spalart et al., the
destruction term of the SA model is augmented outside the attached
boundary layer where turbulent eddies resulting from flow separation
are present. This reduces the level of the turbulence viscosity in the
large eddy simulation (LES) region and hence improves the
resolution of turbulent eddies. As the majority of test cases studied in
this paper involve massive flow separation, we adopted the DDES
method to reduce the turbulent viscosity level.

Popular second-order finite volume convective flux calculation
schemes tend to exhibit overdissipative behavior in vortical flow
regions. On the swirl plane of a vortex, it is quite likely that the
velocity components reach to a local extremum value along any
arbitrary direction due to the constant change of the flow direction.
The artificial dissipation of the second-order schemes, on the other
hand, significantly increases in the presence of local maxima or
minima. This behavior is common both for upwind schemes
including monotone upstream-centered schemes for conservation
laws (MUSCL) and for their central counterparts such as Jameson—
Schmidt-Turkel scalar- [10] and matrix-dissipation [11] schemes.
Higher-order schemes can be considered as the ultimate remedy for
this issue. However, with recent advances and validation for basic
engineering cases [12,13], further developments are expected to
improve the robustness of these schemes for industrial-strength cases
involving complex configurations where grid quality is usually
sacrificed to resolve the complexity of the geometry.

To alleviate the overdissipative behavior of second-order
schemes in vortical regions of the flow, two approaches have been
commonly used: vorticity confinement method and artificial
dissipation scaledown. In the vorticity confinement method [14,15],
a source term is added to the momentum equation. The direction of
the source term is determined based on the principle axes of the
vortex; i.e., a vorticity vector and a normal vector directed toward
the vortex center. This approach is well suited to statistically well-
defined vortices where the vortex and its principle axes experience
no significant distortion during the simulation time. Turbulent
eddies, on the other hand, can undergo huge deformations, are
transient, and can have very short life spans. The common practice
to preserve these eddies in DES problems is to reduce the artificial
dissipation of the convective flux formulation. The dissipative or
upwind contributions of fluxes corresponding to all flow variables
are scaled down by a single scalar coefficient whose magnitude
varies in the computational domain. Various expressions for the
scaledown factor pertaining to several finite volume convective flux
calculation schemes have been proposed [16-19]. A major
challenge here is to limit the scaledown activated region as much as
possible to the eddy dominated area (the focus region in the DES
terminology [20]), as the further extension of the artificial dissi-
pation reduction to the Euler region leads to the slower convergence
of the flow solver.

Lohner [21] developed a new limiting algorithm alongside
variable reconstruction MUSCL schemes to lower the artificial
dissipation within a vortex structure. The basic idea is to prevent the
activation of the slope limiter during the reconstruction of the
velocity component in a certain direction along which, due to
the vortical motion, an extremum occurs. The principle direction of
the vortex is defined via the vorticity vector, a normal vector toward
the vortex center, and a tangential vector defined as the outer product
of the vorticity and the normal vectors. This definition, which implies
the perpendicularity of the vortex axis and its swirl plane, lacks the
generality, especially in the case of turbulent eddies undergoing
stretching and bending. Furthermore, the vortical structures are
recognized as flow regions where a helicity sensor exceeds a given
threshold value. The existence of eddies with a wide range of
strengths in the turbulent flow makes the definition of an appropriate
threshold value ambiguous.

An eddy-preserving slope limiter is introduced in this paper to
mitigate the overdissipation of vortices in second-order finite volume
MUSCL variable reconstruction schemes. This work is inspired by
the idea of the minimal vorticity dissipation limiters of Lohner [21].
A vortex-identification scheme based on the existence of complex
eigenvalues for the velocity gradient tensor [22] is used to activate the
proposed limiting algorithm in the computational domain. This
makes the detection of vortical structures regardless of their strengths
possible. Moreover, principle directions of eddies are determined
based on eigenvectors of the velocity gradient, and no specific
assumption regarding their relative orientation is made. The scheme
dissipation is lowered during the velocity component reconstruction
on the swirl plane of the vortex. This is achieved via inactivating the
slope limiter as well as increasing the weight of central gradients used
for interpolating velocity components on the swirl plane of
the vortex. The vortex dissipation reduction is minor if only the
reconstruction of the velocity components on the swirl plane of
the vortex are performed while the slope limiter is kept inactive. The
higher weight of central gradients improve the vortex resolution
significantly further. Likewise in the Lohner’s approach [21], the
inactivation of the slope limiter is employed in conjunction with the
vorticity confinement method. The higher central gradient approach,
unlike the vorticity confinement method, is applicable to unsteady
deforming eddies.

Low-speed vortical flows studied in this paper involve neither
shock waves nor other discontinuities. However, due to the presence
of vortices, the distribution of velocity components and static
pressure throughout the computational domain experiences numer-
ous extrema. The inactivation of the slope limiter during MUSCL
variable reconstruction in vortical flow regions can lead to further
dissipation of vortices as the upwind and central slopes with opposite
signs can very likely result in a bigger jump between the left and right
interpolated values as compared with the jump obtained via a zero
slope interpolation.

The paper contains the following sections. Numerical schemes are
explained in Sec. II. It includes a brief review of the implementation
of the RANS and DES models, the conventional van Albada limiter,
Lohner’s minimal vorticity dissipation limiter, and the description of
the proposed eddy-preserving limiting algorithm. The performance
of various turbulence modeling and artificial dissipation reduction
schemes are compared in Sec. III. The test cases studied include the
decay of isotropic turbulence (DIT) in a periodic cube, the tip-vortex
characteristics of a NACA0015 wing at high angle of attacks
(AOAs), and unsteady aerodynamic forces around a NACA0021
airfoil at a static stall condition. The effectiveness of the eddy-
preserving limiter in reducing the artificial dissipation will be
compared against other limiters and the effect of the higher central
gradient and the scaledown factor. Conclusions and plans for further
improvements are given in Sec. IV.

II. Numerical Algorithms
A. Navier-Stokes Solver

The compressible Navier—Stokes (NS) equations are discretized
with a hybrid finite volume finite element method [23]. Convective
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finite volume fluxes are calculated using a second-order upwind
MUSCL variable reconstruction scheme on median dual control
volumes. The viscous terms are discretized with linear finite element
shape functions on tetrahedral elements. The approximate Riemann
solver of Roe is adopted for the calculation of convective fluxes

1 o JoF
Roe — _(F. - F.)——P'|P. —
‘Ft_/ 2( l+ j) c caU’

S U,-U) M

where P, is the low-speed preconditioning matrix for conservative
variables [24-26].

An implicit second-order Euler backward time discretization is
employed, where convective and viscous fluxes are linearized and
their corresponding Jacobians are evaluated at the previous time step.
As the calculation of spatially second-order accurate convective
Jacobians is difficult, a first-order approximation is used. To improve
the spatial accuracy of the scheme for unsteady simulations, two or
three Newton iterations are performed at each time step [27].

The linear system of discretized equations are solved using the
generalized minimal residual method (GMRES) [28]. To enhance the
convergence of the flow solver, the block Jacobi and the low-speed
preconditioners [25,29] are implemented.

B. Turbulence Models

The Spalart—Allmaras (SA) one-equation turbulence model [30] is
used to calculate the turbulent viscosity for RANS simulations. The
discretization of the SA equation is similar to the NS equations; i.e.,
convective fluxes are calculated using a second-order finite volume
MUSCL scheme while the diffusive and source terms are discretized
using linear finite element shape functions on tetrahedral elements.

The implementation of the DDES scheme [9] is based on the
substitution of the distance to the wall d in the turbulence equation,
with the following length scale:

d=d— f;MAX(0,d — CpgsA) 2)

The function f, is close to unity in the LES region; it is diminished
in the attached boundary layer (RANS region) and in the irrotational
zones. The functional form of f,; can be found in [9].

In our baseline RANS scheme, the coefficient « in Eq. (1) is equal
to unity, whereby the original Roe flux is retrieved. In the baseline
DES scheme, to reduce the artificial dissipation of the convective flux
calculation scheme in the LES region and improve the resolution of
turbulent eddies, the upwind part of the Roe flux (1) is scaled down
by the following factor [19]:

AN

P < SN

Fig. 1 Median dual control volumes constructed on a 2-D triangular
grid, the boundary interface between control volumes C; and C; is
specified by 9Cj;.

o = max(tyy,, 1 — f4) 3)

The scaledown factor o takes a small value ¢, in the LES region
and is equal to unity in the RANS and irrotational zones. The optimal
values of the DES coefficient Cpgg and the minimum scaledown
factor, a,,;,, for the described discretization algorithm, are equal to
0.51 and 0.015, respectively [19]. They are determined through a
calibration process [31] involving the simulation of the DIT in a
periodic box and the comparison of the calculated energy spectra
with the direct numerical simulation (DNS) data [32].

C. Variable Reconstruction and van Albada Limiter

The current implementation of the second-order MUSCL scheme
is based on the linear interpolation of primitive variables V =
[0, vy, vy, v,, p]” on boundaries of control volumes in the compu-
tational domain, Fig. 1. Primitive variables on dC;;, boundary
interface of C;, and C; control volumes are interpolated using the
following combination of central and upwind increments of
corresponding variables in the direction of edge s;; [33]:

P.
Vi= Vit I —0Af + (1 +0A]]

Vf:V.—%[(l—K)A;+(1+K)Ag.] )

J J
The upwind and central increments are computed as below:
Af, =V, -V, A} =2VV;-s;—(V;=V)
A4 =2VV;-s; —(V;=V) 5)

where s;; = x; — x;. Nodal gradients VV; and VV; are calculated as
the volumetric average of elemental gradients over all tetrahedral
elements connected to nodes i and j, respectively [23]. Finally, flow
gradients in each tetrahedral element are obtained using the finite
element formulation with linear shape functions.

Functions ®; and ®; are slope limiters that aim to preserve the total
variational diminishing (TVD) property for the second-order spatial
discretization. We adopted the van Albada limiter, which is
continuously differentiable and is given by

0 if Aj;A"<0
b = 2A¢ A +e .
m otherwise
ij :

(6)
where - € i, j.

The degree of the approximation, in Eq. (4), can be controlled by
parameter —1 < k < 1. In our baseline variable reconstruction
scheme, we set k = %, which is shown by van Leer [33] to result in a
third-order accurate scheme on uniform structured grids. Larger
values of « lead to the further reduction of the artificial dissipation; in
the limit case of k = 1, a purely central and unstable convective flux
calculation scheme is obtained.

D. Minimal Vorticity Dissipation Limiter of Lohner

The basic idea of the Lohner’s vorticity-preserving limiter [21] is
to prevent the slope limiter to be activated (or to use a less dissipative
limiter) during the reconstruction of the velocity component along

Fig. 2 Orientation of vortex principle axes where the swirl plane is
perpendicular to the vortex longitudinal axis.
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the tangential direction of a vortex. The velocity component in
7;-direction at point i, Fig. 2, is always at its extremal (maximum or
minimum) value compared with those of its neighboring points in the
plane of rotation of a vortex, where t; is the direction of the tangential
velocity at point i. Slope limiters such as the van Albada limiter,
Eq. (6), lower the spatial accuracy of the MUSCL scheme to first
order in the presence of a local minimum or maximum. Conse-
quently, the artificial dissipation of the scheme is increased. Lohner’s
limiter tends to avoid this additional dissipation by inactivating the
limiter in the t-direction.

The two main components of the vorticity-preserving limiter are a
sensor to identify the presence of the vortex in the flowfield and trans-
formation matrices between the grid’s Cartesian coordinate system,
So(x,y, z) and the local vortex system, S, (n, w, T), Fig. 2. One of the
vortex-identification sensors suggested by Lohner [21] and adopted
in the current implementation is the helicity sensor given by

__ hle|
" max(e, |v|)

7

w

Vortical regions are distinguished where o, is greater than a given
threshold value 7,,, and % and ¢ are defined as

w -V

W=
lo|[V]e||

e=nVie| ®
Orthonormal vectors of the local vortex coordinate system

S, (n, w, 1) are calculated using the local vorticity vector @ and its
gradient V|w| as defined below [21]:

Vxv . V]| . NX®
n= 7=

® = —
Vx|’ V]|’ In < @]

®

The calculation of mappings between S, and S, is then
straightforward

A, Ay A
M]: Sg—S, M]=| o, o o (10)
T, T, T

X

-
N

The inverse transformation from S, to &, is given by
[M]™! =[M]”. The algorithm for implementing the minimal
vorticity dissipation limiter is described in [21].

E. Eddy-Preserving Limiter

The concept of the minimal vorticity dissipation limiter is further
expanded in this section to develop a slope-limiting algorithm
capable of preserving eddies of arbitrary orientations and strengths.
The spatial and temporal discretization is required to be fine enough
to properly resolve eddies, however, we impose no further require-
ment on the orientation or the strength of eddies. The configuration of

Fig. 3 Principle axes of a typical vortex undergoing deformation due to
the flow strain field.

an eddy in Lohner’s algorithm described in Sec. IL.D is determined
via its axial direction spanned by w and its plane of rotation spanned
by 7 and n, Fig. 2, which implies that the eddy’s axial direction is
perpendicular to its plane of rotation. This assumption is by no means
general, particularly for stochastic turbulence eddies (coherent
structures) that undergo stretching and bending as a result of the flow
strain field, Fig. 3. Furthermore, a turbulent flowfield contains a
spectrum of eddies with a wide range of strengths, hence the
specification of a single threshold value 7, for the helicity sensor
becomes ambiguous. These issues are addressed in the development
of the eddy-preserving limiter described below; e.g., vortices are
identified based on the existence of complex eigenvalues for the
velocity gradient tensor regardless of their vorticity magnitudes or a
helicity-based strength sensor. Moreover, principle axes of a vortex
are determined using the eigenvectors of the same tensor and no
assumption is made concerning their relative orientation.

To identify vortical flow regions where the eddy-preserving limiter
is activated, one of the popular vortex-identification criteria,
particularly A,-criterion of Jeong and Hussain [34] or enhanced
swirling strength criterion of Chakraborty et al. [22], can be
employed. The latter is selected herein since it leads to the same
eigenvalue problem that later on will be used to obtain the vortex
orientation. This criterion is an enhancement of the vortex definition
proposed by Chong et al. [35], whereby in a vortical region, the
velocity gradient tensor Vv possesses a conjugate pair of complex
eigenvalues; i.e., its spectrum is given by

o(Vv) ={A,, A, +1h, e — 1A}, where [A,;| >€  (11)

Chakraborty et al. [22] added a local measure for the orbital
compactness of the vortical motion to Chong’s criterion. They further
limit the vortical regions to areas where in addition to Eq. (11) the
following condition is satisfied:

Aer
” <$ (12)

-B=
where the values of B and § determine the orbital compactness of the
vortex. In summary, the eddy-preserving limiter is activated where
both Egs. (11) and (12) are valid. These conditions deal with the
existence and the quality of the orbital motion of the flow, inde-
pendent of its strength quantified by vorticity or helicity magnitude.

To calculate the local orientation of a vortex, the relative motion of
two nearby points, located at r and r + Jr, is investigated. A second-
order accurate spatial expansion of the velocity field around the
reference point r yields to [36]

v (r + 6r) = v(r) + Vv - 8r + O(|6r]?) (13)

The relative local trajectory of the nearby point can be calculated
via integrating the system of differential Eqs. (13). To decouple the
equations, velocity gradient tensor is decomposed into the following
form:

A, 0 0
VV:[ur ., uci] 0 )‘(‘r )"ci [ur u., uci]_1 (14)
0 _)\‘L‘i )‘cr

The transformation matrix from the S, system into the system
spanned by eigenvectors u,, u.,, and u,;, is given by

[M] = [ur u., uci]_] (15)

Equation (13) in the new system is written as

A O 0
v +or)=ve)+| 0 A, Ay [or (16)
0 _)"ci cr

Because of the presence of the complex eigenvalues, the velocity
gradient tensor can no longer be completely diagonalized without
introducing imaginary numbers. The local trajectory of the fluid
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particle in the transformed system at time ¢ is then calculated as
below,

rL(1) = (0t
Fop(1) = e[, (0) cos(hgit) + ry(0) sin(iin)]
FLi(0) = e [r,(0) €os(hit) — 14, (0) sinCri)] (17)

where 71.(0), r...(0), and r.,(0) represent the initial location of the
particle in the transformed system. The fluid motionin the u., and u;
direction remains coupled, which indicates the existence of a
swirling motion on the plane spanned by these two vectors. Vector u,
determines the axial direction along which the vortex can be either
stretched or contracted.

The normalized eigenvectors of the velocity gradient tensor,
hence, construct the unit vectors spanning the local vortex system
S,(u,,a,,u,), and the following transformation represents the
mapping between the Cartesian grid coordinates and the vortex
system:

[M] 80'_)Sa) [M] = [ﬁ) ﬁz‘r ﬁz‘i ]_1 (] 8)
S, is, in general, a nonorthogonal system. Using the normalized
eigenvectors, Egs. (14) and (16) are rewritten as below:

Vv
A, 0 0
—[d, d, 4,00 o AafS |18, 4, &,
0 —Aups Ao
(19)
A, 0 0

v +r)=v)+ | 0 Aer Aci ||]:1|‘ s’ (20)
0 —Aylal

cilu,| cr

To avoid the excessive dissipation of eddies, the van Albada limiter
will be inactivated for the reconstruction of velocity components on
the swirl plane of the vortex along @, and u,; vectors (v, and v.,,);
i.e., ® =1 in Eqgs. (4). Furthermore, larger values of «, i.e., bigger
weighting factors for the central increments, are used for the
interpolation of velocity gradients along u,, and a,; vectors on the
swirl plane of a vortex, Eq. (4). Because of the significant change of
velocity gradients along an edge on the swirl plane, the linear
interpolation using nodal upwind gradients Vv; and Vv; is quite
erroneous and leads to extremely different values of interpolated
velocity components on opposite sides of the control volume
boundaries, i.e., |v;(d)i — v;(ci)f| > 0. This makes yet another
significant contribution to the excessive dissipation of the vortex. Itis
therefore alleviated via using larger values of k while interpolating
velocity components v, and v..;.

The foregoing arguments for the occurrence of local extremums of
v, and v,; along arbitrary edges on the swirl plane of the vortex
(s =[0, Ar.,, Ar,;]7) can be easily extended to a general arbitrary
edge s =[Ar,, Ar.,, Ar,;]T. The immediate consequence of
decomposition Eq. (20) is that, at a given point, following properties
are held for velocity gradients in the local S,, system:

avlsr _ av;ri _
ar,  Or.

@n

The discrete implication of Eq. (21) is important. Using Eq. (20),
u,,- and u,,-components of the velocity increments along edge s can
be written as below:

u,|

Avi‘r = VU::r ‘S = )‘crAr;‘r + )"C[ Ari‘i (22)

|uci|

|uci|

AV, =V, -s=—X,

ci ci

Ari'r + )‘L'rAr/ci (23)
lu,|

Therefore, Av,, and Av/, are independent of whether edge s is
extended along the axial direction or is located solely on the swirl
plane (Ar, = 0).

The algorithm for the eddy-preserving limiting procedure is
described below,

1) Ateach endpoint i and j of edge s;;, calculate eigenvalues of the
velocity gradient tensor Vv. If the velocity gradient tensor has only
real eigenvalues at either of the endpoints, then exit and employ the
conventional van Albada limiter Eq. (6) with x = 1/3.

2) Verify the compactness of the vortical motion at points i and j
using Eq. (12). If the flow lacks vortical compactness at either of the
endpoints, then exit and employ the conventional van Albada limiter
Eq. (6) with x = 1/3.

3) Calculate eigenvectors of the velocity gradient tensor at i and j,
whereby obtain unit vectors u,, 4., and u,, as well as
transformation matrices [1\7[] ; and [M] ; at each endpoint. If the
construction of unit eigenvectors fails at both endpoints, then exit and
employ the conventional van Albada limiter Eq. (6) with k = 1/3.

4) Define the edge vortex system S, (4, U,,, U,;) according to the
following conditions:

S

) ifa,, and 4, exist only at end-point i;

) if G,,a,.,and,; exist only at end-point j;
0, ) Of (M <M

) if NI > [V

(24)

Define the edge transformation matrix [M]; correspondingly.

5) Transform v; and v;, as well as A;}, A, and A;f (on_ly
increments corresponding to velocity components) into the S,
system.

6) Calculate v’,f and v’,; using Eq. (4) with x=1/3 and
conventional van Albada limiter Eq. (6).

7) Calculate v}, , Ver,» v’;i, and v, using Eq. (4) with ahigher value
of k compared with that used in the previous step, while the limiter is
inactivated ®; = ®; = 1.

8) Transform back all interpolated velocity components, v’,f s v’,;,
vﬁﬁ[, Ver,» vg’, and v;; into the S, system.

In the fourth step of the foregoing algorithm, the edge vortex
system is defined as the local vortex system at the endpoint where the
second norm of the local inverse transformation matrix is smaller.
This is an attempt to minimize the artificial dissipation via
minimizing the difference between corresponding left and right (+
and —) interpolated values. The upper bound for the second norm of
the velocity difference vector in the edge grid system S, is calculated
as

vy — vy . v, — U’rj . v, — U/rt

vy, = (=M v, = vl | (ST || v, — v,

vz, — v} Ve, = Vi, Vi, = Vi,
(25)

It is emphasized here that this selection is just an attempt to
minimize the amount of the artificial dissipation; since the norm of
the velocity difference vector on the right-hand side of Eq. (25) is also
dependent on the selection of the transformation matrix. Further-
more, a smaller norm of the velocity difference vector (left-hand side)
does not, in all cases, guarantee a smaller overall dissipation.

An alternative approach to obtain the edge vortex system S,, is to
define 4,, u,,, and ., as eigenvectors of the velocity gradient tensor
calculated on a coarse level grid containing the reference edge. Since
a vortex is by definition a nonlocal flow feature, this approach
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complies better with the vortex physics. While the definition of the
vortex system based on local fine grid velocity gradients involves
some level of nonlocality due to the extended stencil required for the
calculation of velocity gradients, a coarse grid solution provides
more nonlocal features to the kinematical description of a vortex.

III. Results

Our objective is to evaluate the performance of the minimal
vorticity dissipation limiters described in Secs. IL.D and ILE for the
resolution of well-defined vortices as well as stochastic turbulence
eddies. The test cases considered include the DIT in a periodic box,
turbulent flows around the stationary and oscillating NACA0015
wing at high AOAs, and the turbulent flow around NACA0021 airfoil
at a poststall condition.

A. Description of Schemes

Various numerical schemes have been investigated; each scheme
is devised as a distinct combination of a turbulence modeling strategy
(RANS or DES) and a slope limiter (van Albada, Lohner, or eddy-
preserving). The list of various numerical algorithms with
corresponding values for the constants appeared in the numerical
formulations of the previous chapters is given by Table 1.

The presence of vortical structures are determined by threshold
values €, ¢, §, and 7,; the first three parameters pertain to the
enhanced swirling strength criteria of Chakraborty et al. [22] in
Egs. (11) and (12), and last one appears in the helicity sensor of
Lohner in Egs. (7). € is the minimum acceptable value of A.; below
which the eigenvalue is considered a real number. It is set equal to
10~ in all test cases. ¢ and § determine the orbital compactness of the
vortex and are both set to 1/+/3. This is based on an argument by
Chakraborty et al. [22] to identify the relationship between different
vortex-identification criteria. 1, specifies the minimum helicity of a
vortical structure that activates the Lohner limiter. As a variety of
vortices of different strengths are investigated in each test case, this
threshold is set equal to a rather small value of 0.1.

Parameter o, is the artificial dissipation scaledown factor in the
LES region, as appeared in Eq. (3). Its optimum value is determined
in the calibration procedure explained in Sec. IIL.B. In the original
Roe flux formulation no scaledown factor is used; i.e., & = oy, = 1;
however, in DES schemes, smaller values are required to enhance the
resolution of vortices in the LES region. Smaller values of «,;,, slow
down the convergence of the flow solver and can impair the
robustness of the scheme. Hence, schemes that can maintain a
reasonable accuracy for the captured vortices with higher values of
omin are preferable. The development of DES-E, DES-L, DES-C
schemes and their RANS counterparts, where «,,;, = 1, is based on
this consideration.

Parameter « determines the weight of the central and upwind
gradients used for the variable reconstruction. The value of k = 1/3,
as shown by van Leer [33] and Dervieux and Desideri [37],in Eq. (4),

Table 1 Numerical schemes and constant values

Scheme  Turbulence Limiter Upnin K
DES-0 DDES van Albada 0.015  One-third
DES-C DDES van Albada 1 0.8 in vortical region

One-third elsewhere
0.8 in vortical region
One-third elsewhere
0.8 in vortical region
One-third elsewhere

DES-E DDES Eddy-preserving 1

DES-E0 DDES Eddy-preserving 0.3

DES-L DDES Lohner 1 0.8 in vortical region
One-third elsewhere

DES-VA DDES van Albada 1 One-third

RANS-0 RANS van Albada 1 One-third

RANS-C RANS van Albada 1 0.8 in vortical region

One-third elsewhere
0.8 in vortical region
One-third elsewhere

RANS-E RANS Eddy-preserving 1

results in the third-order spatial accuracy on uniform structured grids.
Larger values of « lead to lower artificial dissipation; e.g., in the
extreme case of x = 1, the scheme would be purely central and
unstable. Ideally, we would like to have the « value as large as
possible provided that no compromise is made with respect to the
stability of the scheme. In DES-E, DES-L, DES-C schemes and their
RANS counterparts, where the Lohner or the eddy-preserving limiter
is activated, a larger value of x=0.8 is employed for the
interpolation of specific components of the velocity as described in
Secs. IL.D and ILLE. Where no vortex is detected, all variables are
interpolated using k = 1/3.

The optimum value of ¥ = 0.8 is determined via some numerical
experiments. The experiments include the simulation of a tip vortex
in inviscid and viscous flows and the comparison of calculated vortex
characteristics at different values of x. The maximum vorticity and
helicity at the center of the vortex are significantly reduced for
k> 0.9.

DES-0 and RANS-0 schemes are our baseline DES and RANS
algorithms. DES-C and RANS-C schemes are similar to DES-E and
RANS-E schemes except for the regions where a vortex is detected.
The higher value of «=0.8 (instead of 1/3) is used for
reconstruction of all three Cartesian components of velocity in these
regions while the transformation step is dismissed. These schemes
are devised to investigate the importance of performing the variable
reconstruction along the vortex principle axes as it is done in DES-E
and RANS-E. The value of « = 0.3 in the DES-EO scheme is chosen
Jjust for the demonstration of how the prediction accuracy for vortex
characteristics can be improved by further reducing o while the
eddy-preserving limiter is employed. The same improvements are
expected for other schemes; e.g., DES-C and DES-L. The
combination of the scaledown parameter, slope limiter, and the
parameter k results to the various schemes presented in Table 1 and
are essential in this study to demonstrate the effectiveness of each
approach in reducing the artificial dissipation while ensuring a stable
scheme.

B. Decay of Isotropic Turbulence

The decay of homogeneous isotropic turbulence in a periodic cube
with an equal edge length of 2 is simulated. The turbulence kinetic
energy spectra is then compared with available DNS results [32]. The
initial velocity field is calculated via filtering the DNS velocity field
at the nondimensional time of * = 1.01356. The reference length
and velocity used for the nondimensionalization are equal to unity.
The flow is assumed at atmospheric condition, hence the Mach and
Reynolds numbers based on the above reference values are equal to
0.003 and 4.82 x 10°. The Courant-Friedrichs—Lewy (CFL) number
for unsteady flow calculations is fixed and equal to seven. The
unstructured tetrahedral mesh is generated by first dividing each edge
into 64 equal intervals whereby a structured cubic mesh is created;
then each cube is broken into six tetrahedral elements without
introducing any additional mesh node.

This is the standard test case used to calibrate the baseline DES
scheme (DES-0) and to obtain the optimum Cpgg and o,
coefficients [19,31]. Furthermore, this test case provides an estimate
of the size of the smallest eddies that can be accurately resolved via a
given scheme. The scheme is expected to recover the proper energy
spectra (turbulent kinetic energy versus eddy wave number k) for the
range of eddies from the largest to the smallest resolved eddies of the
size of two grid points corresponding to the Nyquist cutoff frequency.

Turbulence kinetic energy spectra calculated using DES-0, DES-
VA, DES-L, and DES-E schemes at a nondimensional time of
t* =2.018 are compared with the DNS data in Fig. 4a. The
extremely reduced artificial dissipation of DES-0 scheme leads to the
best agreement with the DNS spectra at the upper end of the resolved
wave numbers close to the Nyquist cutoff frequency of 32. DES-L
and DES-E rely on capturing vortices to activate the artificial
dissipation reduction scheme. As the smallest properly captured
eddies (with resolved distinct core regions) are of the size of
approximately 10 edge lengths [20], one expects to obtain proper
energy levels at wave numbers smaller than 67 given the current
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a) DES schemes

10
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Fig. 4 Comparison of 3-D turbulence kinetic energy spectra at¢* = 2.018 for the decay of isotropic turbulence in a periodic cube with equal edge length
of 2r. DES-0, DES-E, DES-L, DES-VA, RANS-0, and RANS-E simulations at a spatial resolution of 64 are compared with DNS data at a spatial resolution

of 512.

computational grid. This loss of accuracy is depicted in Fig. 4a as the
sudden change of the slope in the turbulence energy spectra curves.
DES-VA scheme predicts the lowest amount of kinetic energy
spectra in the entire range of resolved wave numbers in comparison
to other DES schemes.

A similar comparison has been made in Fig. 4b for RANS-0 and
RANS-E schemes. The DES-E spectra is also included for the
reference. RANS schemes also exhibit an excessive damping of
small eddies. RANS predictions are similar to DES-VA results. The
performance of RANS schemes, in particular, has been insensitive to
the selection of the artificial dissipation scheme. In fact, RANS-0,
RANS-E, and DES-VA schemes result in almost the same energy
spectra.

Neither Lohner’s limiter nor the eddy-preserving limiter has been
capable of predicting an accurate turbulence kinetic energy level for
small eddies up to the Nyquist cutoff frequency. To activate the eddy-
preserving limiter to reduce the dissipation of eddies, a sufficiently
fine spatial and temporal resolutions should be provided to capture
the structure of corresponding eddies. The 643 resolution on the DIT
cube is fine enough for the resolution of eddies with wave lengths
smaller that 6-7. This is almost one fifth of the corresponding
Nyquist cutoff frequency, which is the upper bound for wave
numbers where the energy spectra should be properly resolved in
DIT problems.

A / QWYY y
Fig. 5 Unstructured tetrahedral mesh around NACA0015 rectangular
wing. The grid contains 2,247,174 nodes and 13,300,570 elements. The
dense area above the wing represents the focus region where turbulent
eddies are to be captured.

C. NACA0015 Wing at High Angles of Attack

Turbulent flows around a rectangular NACAOO15 wing at high
AOAs of 12.0°, 14.0°, 16.0° and 18.0° are simulated. Our main
objective is to quantitatively evaluate the performance of different
schemes in the resolution of a tip vortex. Moreover, qualitative
comparisons are made through investigating the quality of resolved
turbulence eddies formed on the upper surface of the wing under
static stall conditions. The tip vortex characteristics are calculated ata
plane normal to the freestream at x/c = 1 downstream of the wing
trailing edge where the streamwise direction is represented by x, and
c indicates the wing chord. Flow solutions are averaged over a period
of 1000 time steps for the calculation of tip vortex characteristics.
Numerical predictions are compared against the experimental
measurements performed by Birch and Lee [38,39].

The computational grid shown in Fig. 5 consists of 2,247,174 grid
points and 13,300,570 tetrahedral elements. The mesh is generated to
address DES grid requirements described by Spalart [20]; e.g., the
focus region above the upper surface of the wing depicted in Fig. 5
contains almost isotropic elements with equal edge length of 0.028¢.
The firstlayer grid spacing from the wall in the RANS region satisfies
y* <1 in the law-of-wall units. The physical time step is equal to
0.008¢/V,,, which approximately corresponds to a CFL number of
5000. The wing geometry and freestream conditions are described in
Table 2. The flow is at atmospheric condition and the reference length
and velocity are equal to the wing chord and the freestream velocity,
respectively. Although RANS requirements for the mesh and the
time step are generally less stringent than DES, the same mesh and
time step are used for RANS simulations to make a fair assessment of
the accuracy of each scheme for unsteady flow simulations.

A finer grid with 4,379,053 nodes and 26,064,193 tetrahedra, is
also generated through grid refinement by a factor of +/2 in the focus
region. DES results on the coarse and fine grids for the wing at 18°
AOA show no significant differences in terms of the averaged
resolved features. Simulation results presented in subsequent
sections are obtained on the coarse grid.

1. DES Results

Tip vortex characteristics calculated using DES-0, DES-E,
DES-L, DES-VA, and DES-C are compared with experimental
measurements at various AOAs in Figs. 6a—6¢c. More details about

Table 2 Wing geometry and freestream condition
for NACAO0015 test case

Chord  Half-span Voo
0.203m 0.508 m 14.4 m/s

Reynolds number Mach number
1.86 x 10° 0.04
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the postprocessing of simulation data for the calculation of tip vortex
characteristics can be found in a previous work by the same authors
[19]. The maximum 2-D vorticity on x/c = 1 plane is depicted in
Fig. 6a, where the schemes can be ordered, descendingly, with
respect to the level of agreement with the experiment as DES-0, DES-
E, DES-C, DES-L, and DES-VA. All schemes underpredict the
maximum 2-D vorticity. The comparison of DES-0 and DES-VA
results demonstrates the effectiveness of the scaledown approach.
The sole difference between the two schemes is the extreme artificial
dissipation scaledown factor of 0.015 in DES-0, which leads to the
sharpest resolution of the tip vortex and the maximum captured 2-D
vorticity and tangential velocity and the smallest core radius among
all DES schemes. To emphasize the importance of the eddy-
preserving limiter, DES-E and DES-C results are compared. The
proper selection of the velocity components on the swirl plane of the
vortex and the consequent implementation of the eddy-preserving
limiter with the use of the larger k = 0.8 value for the interpolation
result in the second most accurate predictions for the 2-D vorticity on
the x/c =1 plane. Further reduction of the artificial dissipation
through the use of the larger k = 0.8 value for the interpolation of all
three Cartesian components of the velocity, in the DES-C scheme,
fails to provide a sharper resolution of the 2-D vorticity. Furthermore,
DES-C predicts a larger core radius than that is obtained by DES-E,
Fig. 6¢. We attribute this mainly to the importance of performing the
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velocity component reconstruction along the vortex principle axes.
The artificial dissipation reduction for a single component of the
velocity in the DES-L algorithm is insufficient to provide a
significant improvement over DES-VA results for the resolution of
the planar vorticity. No artificial dissipation reduction treatment is
employed in the latter algorithm, which results in the most prominent
dissipation of the vortex and the lowest captured 2-D vorticity levels.

A similar trend can be observed in Fig. 6b for the maximum
captured tangential velocity on the x/c = 1 plane where all schemes
underpredict the tangential velocity and they can be ordered in terms
of the accuracy of the predictions as DES-0, DES-E, DES-C, DES-L,
and DES-VA. Likewise, Fig. 6¢ follows the same trend. However, as
explained in the preceding paragraph, the difference between the
DES-E and DES-C schemes is more pronounced in this figure.

The convergence of different DES schemes are compared in
Fig. 7a. The plot shows the residual reduction of the GMRES
algorithm in a typical time step. Because of a significantly lower
artificial dissipation, & = 0.015, DES-0 requires, at least, 2.5 times
more iterations compared with other DES schemes to achieve a
residual reduction of 6 orders of magnitude. DES-E, DES-L, and
DES-VA show more or less the same convergence behavior, with
DES-VA being slightly faster. Since the cost of local eigenvalue
calculations is negligible compared with the cost of matrix-vector
product operations in GMRES algorithm, the 2.5 fold reduction in
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Fig. 6 Vortex statistics at different AOAs. Maximum planar vorticity, maximum tangential and core radius of the tip vortex are calculated at x/c = 1
plane downstream of the trailing. DES-0, DES-E, DES-L, DES-VA, and DES-C predictions are compared with the experimental data.



Downloaded by UNIV OF MISSOURI-COLUMBIA on February 24, 2013 | http://arc.aiaa.org | DOI: 10.2514/1.J051200

MOHAMED, NADARAJAH, AND PARASCHIVOIU 437

100
F ———— DES-0
———— DES-E0
10" ——— DES-E
——— DES-L
———— DES-C
1021 ———— DES-VA
= F
3 ool
B 107
Q E
o F
10"
10°
10—67\\\\|\\\\|\\\I\\\\I\\\\I\\\I
0 50 100 150 200 250 300
Iteration
a) DES schemes

100
RANS-0
4 RANS-E
10 RANS-C
DES-E
102
® F
=i \
B 107
[} E
o F
10*
10°
1057””“‘”“ I TR RPETUE B |
0 50 100 150 200 250 300
Iteration
b) RANS schemes

Fig. 7 Residual reduction versus GMRES iterations in a typical time step for the flow around NACA0015 wing at 18° AOA. Part a) DES-E0, DES-E,
DES-L, DES-C, and DES-VA schemes are compared with the baseline scheme, DES-0; and part b) RANS-E, RANS-C, and DES-E schemes are compared

with the baseline RANS scheme, RANS-0.

the number of iterations leads to a 2.5 fold speedup in terms of the
computational time.

The artificial dissipation reduction scheme is activated in a
significantly smaller region within the computational domain for
DES-E runs in comparison to the DES-0 results, Figs. 8a and 8b.
Regions where the scaledown factor is at its minimum value of 0.015
in the case of DES-0, or areas where the eddy-preserving limiter is
active in the case of DES-E are indicated with the red color in this
figure. For the DES-0 scheme, except in a small region in the vicinity
of the wing surface, the artificial dissipation scaledown is fully active
in the entire computational domain. The implementation of another
scaledown function proposed by Travin et al. [16] led to no
significant reduction in the extent of this area. The eddy-preserving
limiter, however, is only activated where vortical structures are
detected. This considerably limits the red zone and contributes to the
faster convergence of the scheme.

The accuracy of DES-E can be further improved by scaling down
the artificial dissipation of the flux calculation scheme; e.g., in the
DES-EO scheme the artificial dissipation (upwind) part of convective
fluxes for all five conservative variables are scaled down by a factor of
0.3 in the LES region of the flow, i.e., oy, = 0.3. Figure 9 shows
vortex characteristics calculated using DES-0, DES-EO, and DES-E
schemes. The accuracy of numerical predictions for maximum
tangential velocity and the core radius is almost identical for DES-EO

-

a) DES-0 scheme

and DES-0 schemes. This enhanced accuracy is achieved at the
expense of a slower convergence; DES-EQ exhibits only a two fold
faster convergence rate than that of the baseline DES-0, Fig. 7a. The
agreement between the experimental data and the simulation is
slightly improved if the scaledown factor is further decreased to
Omin = 0.2. Both values of «,,;, =0.2 and 0.3 provide a good
agreement with the experimental data for the maximum tangential
velocity and the core radius calculated from simulations. To achieve a
good agreement for the maximum planar vorticity is more
challenging, e.g., the calculated values are extremely sensitive to the
grid spacing on x/c = 1 plane.

Turbulence eddies resolved using various DES schemes are
compared in Figs. 10a—10f. These figures correspond to the wing at
the static stall condition at an AOA of 18°. DES-EOQ provides the
closest resolution to that obtained using the baseline DES scheme.
DES-VA scheme is unable to capture the shedding of vortices.
Although it predicts flow separations covering the entire upper
surface of the wing, the reversed flow regions remain in close
proximity of the surface and no shedding is predicted. Whereas, in all
other schemes involving an artificial dissipation reduction algorithm,
unsteady vortex shedding phenomena is observed. This highlights
the importance of the artificial dissipation reduction algorithms to
more accurately capture the flow physics on the upper surface of the
wing.

b) DES-E scheme

Fig. 8 Contour plots indicating regions where the artificial dissipation reduction scheme is active. Contours are depicted on several planes normal to the
wing’s chordwise direction. The light grey regions represent areas where either the scaledown factor is at its minimum value or the eddy-preserving

limiter is activated.
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2. RANS Results

RANS-0, RANS-E, and RANS-C predictions are compared in
Figs. 11a—11c with experimental measurements. DES-E results are
also included in these figures for reference. RANS-E and RANS-C
significantly outperform the baseline RANS schemes. In fact, DES-
E, RANS-E, and RANS-C predictions are quite close; DES-E shows
aslightly better accuracy. The enhanced performance of the RANS-E
scheme compared with other RANS schemes is obtained with a
minimal cost in terms of the convergence rate or the computational
time; as depicted in Fig. 7b, the convergence rates of RANS-0,
RANS-E, and RANS-C are almost identical.

The convergence of different RANS schemes are compared with
the DES-E scheme in Fig. 7b. The plot indicates almost the same
convergence rate for DES-E and all RANS schemes regardless of the
type of the implemented artificial dissipation reduction algorithm.

Turbulence eddies resolved using various RANS-0 and RANS-E
schemes are compared in Figs. 12a and 12b. The wing is at a poststall
condition at an AOA of 18°. RANS-E clearly performs a superior job,
compared with the baseline method, to capture the shedding of
vortices from the upper surface of the wing. RANS-0 predicts the
flow separation from the entire upper surface of the wing [19],
however, the reversed flow region similar to what is observed in DES-
VA results, is bounded to a small distance from the wing upper
surface without triggering the vortex shedding phenomena.

D. NACA0021 Airfoil at High Angle of Attack

The turbulent separated flow around NACAO0O021 airfoil at 60°
AOA is simulated. This is one of the standard test cases used for the
validation of DES implementations in the DESider project [40]. The
available experimental data that are obtained via postprocessing of
pressure measurements include the average lift and drag coefficients,
average pressure distribution around the airfoil, and the frequency
content of the lift coefficient [40,41]. This provides a suitable
database to assess the performance of different numerical schemes
studied in this paper. In the postprocessing of the numerical simu-
lation data, average values and frequency contents are calculated in
an interval of 4000-5000 time steps excluding the first transient 200
time steps. A smaller interval of 2500 time steps, however, yielded to
no significant changes in the major features captured in the
postprocessed data.

The computational grid is shown in Fig. 13. It contains 3,726,534
mesh points and 22,076,935 tetrahedral elements. DES grid
generation guidelines are followed herein; e.g., y© < 1 criterion is
satisfied in the RANS region and the focus region contains nearly
uniform isotropic distribution of tetrahedral elements with an almost
equal edge length of 0.025¢. The edge lengths gradually increase at a
very small growth rate of 1.02 farther from the airfoil surface in the
focus region. The physical time step is equal to 0.0125¢/V,, which
approximately corresponds to a CFL number of 8000. The airfoil
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Fig. 9 Vortex statistics at different AOAs. Maximum planar vorticity, maximum tangential and core radius of the tip vortex are calculated at x/c = 1
plane downstream of the trailing. DES-0, DES-E, and DES-E0 predictions are compared with the experimental data.
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geometry and the freestream flow conditions are described in Table 3.
The flow is at atmospheric condition.

DES-0 scheme with & = 0.015 is unstable in this test case. The
scheme remains unstable for « < 0.3, hence DES-0 results reported
in this section correspond to an augmented coefficient of @ = 0.3.

Our numerical simulations are also compared with some of the
benchmark data of the DESider project [42]. In particular, where data
were available [40], the average force coefficient, pressure distri-
bution, and the spectral content of the lift coefficient provided by
DLR, German Aerospace Center and National Aerospace
Laboratory/NLR (The Netherlands) are included in the comparisons.
DLR simulations are performed using an unstructured finite volume
compressible NS solver with a second-order accurate discretization
in space and time (TAU code). While NLR computations correspond
to a block-structured finite volume NS solver where convective
fluxes are discretized using a fourth-order accurate scheme [40]. SA-
DES and X-LES [42] turbulence modeling are employed in DLR and
NLR solvers, respectively. Three different meshes, coarse, medium,

and fine, were considered in that study; they consisted of 476,784,
1,588,776, and 5,316,444 mesh points, respectively. The computa-
tional domain had a span width of one chord length, however, as
mentioned before, a span width of four chord is employed in this
work. Our computational grid includes an average of 931,633 grid
points in unit span length. As the fine grid simulations were not
sufficiently converged, only the coarse and the medium grid data for
the spectral content of the lift coefficient and the average pressure
distribution around the airfoil are compared with our simulation
results.

1. DES Results

Pressure coefficient distribution around the airfoil calculated
using DES-0, DES-E, DES-L, DES-C, and DES-VA schemes are
compared with the experimental measurements in Fig. 14. As the
flow remains attached and vortical structures are absent on the
lower surface of the wing, all schemes predict the pressure
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Fig. 11 Vortex statistics at different AOAs. Maximum planar vorticity, maximum tangential and core radius of the tip vortex are calculated atx/c = 1
plane downstream of the trailing. RANS-0, RANS-E, RANS-C, and DES-E predictions are compared with the experimental data.

distribution on the lower surface of the airfoil with more or less the
same accuracy. On the upper surface of the wing, DES-L and DES-
VA overpredict the pressure, whereas DES-C exhibits a slight
underprediction. DES-0 and DES-E simulation results are close,
with DES-0 being slightly more accurate.

The average pressure coefficients reported by DLR on the coarse
grid and by NLR on the coarse and medium grids are depicted in
Fig. 15. The pressure coefficients on the coarse grid are closer to the
experimental measurements.

a) RANS-0
Fig. 12 A, isosurfaces for flow around NACA0015 at 18° AOA under static stalls condition. Flowfields calculated using different RANS schemes are
compared: part a) RANS-0; and part b) RANS-E.

b) RANS-E
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airfoil. The grid contains 3,726,534 nodes and 22,076,935 elements. The
dense area above the wing represents the focus region where turbulent
eddies are to be captured.

Table 3 Airfoil geometry and freestream condition
for NACAO0021 test case

Chord Span Voo
0.125m 0.500m 56.3 m/s

Reynolds number Mach number
2.70 x 103 0.15

Average lift and drag coefficients C; and C}, are listed in Table 4. It
should be clarified that the experimental measurements for lift and
drag coefficients are based on the pressure integration of the
measured values around the wing surface [41]. The simulation
results, however, includes viscous forces. As no tolerance has been
reported for the accuracy of the measured force coefficients, the sim-
ulation data herein are compared with the exact reported measured
values. The closest lift value to the experimental measure-
ment obtained using the DES-E method, while the DES-C scheme
results in the least deviation from the measurement for the drag coef-
ficient. All schemes underpredict the drag coefficient. Because of the

A Experiment
DES-0
DES-E
DES-L
DES-VA
DES-C

[ \ A
AN P
L ‘\5,“,/ e
TR T

T I SN ST TSI Y N NN |

0 0.2 0.4 0.6 0.8 1
X

Fig. 14 Average pressure coefficient distribution around NACA0021
airfoil at Re = 270, 000 calculated using DES-0, DES-E, DES-L, DES-C,
and DES-VA schemes.

A Experiment

DLR -coarse

1 — — — - NLR - coarse
-2 — — — - NLR - medium

- - - ~

0 0.2 0.4 0.6 0.8 1

Fig. 15 DESider benchmark data for pressure distribution around
NACA0021 airfoil calculated on the coarse grid (DLR) and the coarse
and medium grids (NLR) [40].

lack of error bounds for measured values as well as the discrepancy
between the type of forces considered in the measurement and those
in the numerical simulations, as explained earlier in this paragraph,
we feel that the comparison of the performance of different numerical
schemes, solely based on the accuracy of the lift and drag values, is
inconclusive. The accuracy of DLR and NLR results degrades as the
grid becomes finer. The DLR study demonstrated challenges in
obtaining a grid converged solution [42].

Spectral contents of the lift coefficient history for DES schemes
are depicted in Figs. 16a—16e. Two peaks are present in the
experimental measurement at St = fc¢/V,, & 0.2 and 0.4, where f is
the frequency of oscillations in Hz. The challenge is to accurately
capture the second peak. Although all DES schemes are capable to
resolve the first peak, only the DES-E scheme provides a clear
resolution of the second peak. DES-O shows some noticeable
spurious oscillations in the vicinity of the second peak. A small
spurious peak is also present before the first peak, at St &~ 0.12. These
spurious oscillations are significantly amplified in DES-C
predictions. DES-L and DES-VA failed to provide a recognizable
resolution of the second peak.

DLR prediction for the lift coefficient spectral contents on the
coarse and medium grids are depicted in Fig. 16f. Both peaks are
captured, however, the resolution of the reported data is insufficient
to determine the exact location of the second peak.

The convergence of the flow residual in the GMRES solver at a
typical time step are shown in Fig. 17a for DES schemes. Conver-
gence rates of DES-E, DES-L, DES-C, and all RANS schemes are

Table 4 Average lift and drag coefficients
for NACA0021 at 60° AOA

Scheme C, AC, Cp ACp
DES-0 095 0.02 149 —0.06
DES-E 094 0.01 149 —0.06
DES-L 0.88 —0.05 137 —0.18
DES-C 096 0.03 153 —0.02
DES-VA 091 —0.02 142 -0.13

DLR coarse 090 —0.03 1.50 -0.05
DLR medium  0.89 —0.04 147 —0.08
DLR fine 120 0.27 1.86 0.31
NLR coarse 1.08 0.15 153 -0.02
NLR medium 1.17 024 1.74 0.19

NLR fine 1.15 022 179 024
RANS-0 090 —0.03 1.39 -0.16
RANS-E 0.86 —0.07 133 -0.22
RANS-C 0.84 —0.09 131 -0.24
Experiment 093 — 155 —
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Fig. 16 Frequency content of the lift history for flow around NACA0021 airfoil at 60° AOA. Lift coefficients calculated using different DES schemes are
compared: part a) DES-0; part b) DES-E; part ¢) DES-L; part d) DES-C; part e) DES-VA; and part f) DLR results on coarse and medium grids.

almost identical; while using DES-0 with o = 0.3, 50% more
iterations are required to reduce the flow residuals 6 orders of
magnitude.

Turbulent eddies captured using DES-0, DES-E, DES-L, DES-C,
and DES-VA are depicted in Figs. 18a—18e, respectively. All DES
schemes capture the flow separation and vortex shedding phenom-
ena. Turbulent small structures are resolved in all DES simulations as
well.

2. RANS Results

Average pressure distribution around NACAO0021 airfoil
calculated using different RANS schemes are depicted in Fig. 19.
DES-E results are also included for the comparison. All RANS
schemes (RANS-0, RANS-E, and RANS-C) are unable to accurately
capture the vortical flow physics in the separated flow region and
hence overpredict the pressure distribution on the upper surface of
the wing. In the attached flow region on the wing lower surface,
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Fig. 17 Residual reduction versus GMRES iterations in a typical time step for the flow around NACA0021 airfoil at 60° AOA. Part a) DES-E0, DES-E,
DES-L, DES-C, and DES-VA schemes are compared with the DES-0 with & = 0.3; part b) RANS-E, RANS-C and DES-E schemes are compared with the

baseline RANS scheme, RANS-0.

however, the accuracy of RANS schemes is comparable to what is
provided by DES schemes.

The lift and drag coefficients calculated from RANS simulations
are reported in Table 4. RANS schemes underpredict the lift and,
more significantly, the drag coefficients. RANS-0 exhibits the best
performance among all RANS schemes as its calculated average
force coefficients are the closest to the experimental measurements.
However, due to the issues discussed in Sec. III.D.1, no conclusive

argument for the accuracy of the schemes can be made solely based

a) DES-0 b) DES-E

¢) DES-L

e) DES-VA

Fig. 18 A, isosurfaces for flow around NACA0021 airfoil at 60° AOA
under static stalls condition. Flowfields calculated using DES schemes
are compared: part a) DES-0; part b) DES-E; part ¢) DES-L;
part d) DES-C; and part e) DES-VA.

on the comparison of the measured and numerically calculated force
coefficients.

Spectral contents of the lift history obtained from RANS
simulations are shown in Figs. 20a—20c. Here again, the first peak is
accurately captured by all schemes, whereas the second peak either
is significantly damped, as depicted in RANS-C predictions, or is
poorly resolved due to strong spurious oscillations, as shown in
RANS-E and RANS-0 results. There is some evidence that the
RANS-E scheme is able to detect the spike for the second peak
compared with the RANS-0 and RANS-C schemes. However, the
resolution is insufficient to provide a conclusive indication.

The convergence rate of RANS-0, RANS-E, and RANS-C
schemes are compared with that of the DES-E scheme in Fig. 17b.
The use of different turbulence modeling has a minimal influence on
the rate of the convergence in a typical time step of the unsteady flow
simulation for the problems considered in this paper.

The resolution of eddies captured using RANS-0, RANS-E, and
RANS-C schemes are compared in Figs. 21a-21c. The flow
separation and vortex shedding from the upper surface of the wing
are depicted in all RANS simulations. More three-dimensional
structures are captured when the eddy-resolving algorithm or the
artificial dissipation reduction via the DES-C scheme is employed, as
expected.

A Experiment
DES-E

L RANS-0
-2 RANS-E
RANS-C

TR S [N NS N [N TN SR N [N T S N |

L1
0 0.2 0.4 0.6 0.8 1

Fig. 19 Average pressure coefficient distribution around NACA0021
airfoil at Re = 270, 000 calculated using RANS-0, RANS-E, RANS-C,
and DES-E schemes.
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Fig. 20 Frequency content of the lift history for flow around NACA0021 airfoil at 60° AOA. Lift coefficients calculated using different RANS schemes

are compared: part a) RANS-0; part b) RANS-E; and part ¢) RANS-C.

IV. Conclusions
A slope limiter for MUSCL schemes is proposed to reduce the
overdissipation of vortices in flow simulations. The algorithm aims
to preserve vortices captured in the computational domain by

a) RANS-0

b) RANS-E

b

¢) RANS-C

Fig. 21 A, isosurfaces for flow around NACA0021 airfoil at 60° AOA
under static stalls condition. Flowfields calculated using RANS schemes
are compared: part a) RANS-0; part b) RANS-E; and part ¢) RANS-C.

lowering the artificial dissipation in the vortical flow region. This is
achieved via augmenting the weight of the central gradients used for
the interpolation of velocity components on the swirl plane of the
vortex. The performance of the algorithm to accurately capture
vortex characteristics for statistically well-defined vortices and its
potential as an artificial dissipation reduction scheme for turbulent
flow simulations are investigated.

Once the proper spatial and temporal resolutions to capture
vortices are provided, the algorithm can act to reduce the dissipation
of vortices and to improve their resolution. The DIT problem
emphasizes this requirement, where the resolution of proper energy
spectra at the Nyquist cutoff frequency is only achieved via the DES-
0 scheme.

The proposed method shows a superior performance, in
comparison with standard RANS and DES schemes involving no
artificial dissipation reduction treatment, in capturing tip vortex
characteristics of a NACA0015 wing at high AOAs (as depicted in
Figs. 6 and 10-12), as well as in resolving the second peak in spectral
contents of the lift history of a NACA0021 airfoil at 60° AOA (as
depicted in Fig. 16). The eddy-preserving limiter with the DES
scheme provides the best resolution of the second peak in the lift
coefficient spectra. This peak is not captured by the conventional van
Albada limiter, and it is accompanied with significant spurious
oscillations in DES-0 and DES-C results. Although an artificial
dissipation scaledown algorithm with an extreme factor of 0.015
leads to a better resolution of the tip vortex in the NACAOQ015 test
case, itrequires 2.5 times more iterations to achieve the same residual
reduction. Furthermore, the baseline DES method remains unstable
for scaledown values smaller than 0.3. Even at this moderate value,
the baseline DES’ resolution of the second peak is obscured due to
the presence of the spurious peaks and its convergence is 50% slower
than that of the eddy-preserving algorithm.
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The implementation of an identical slope-limiting scheme for
the interpolation of other flow variables that undergo a minimum
or maximum value in a vortex should be studied. In particular, a
minimum pressure often exists along the axis of a free vortex.
The application of a similar limiter might further enhance the
vortex resolution. The behavior of the eddy-preserving limiter in
the presence of shock waves and other flow discontinuities should
be investigated. Additional switches for the shock detection might
be necessary to turn off the eddy-preserving limiter in these
regions.
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